PODCAST
Tennessee Turfgrass Association – How Does Soil Water Content Impact Bermudagrass Athletic Fields and More . . .
PODCAST: PLAY IN NEW WINDOW | DOWNLOAD
SUBSCRIBE: APPLE PODCASTS | SPOTIFY
Tennessee Turfgrass Association – Kyley Dickson, Ph.D. and John C. Sorochan, Ph.D.
Many athletic fields in the U.S. are built with native soils in contrast to constructed sand root zones such as those developed according to the United States Golf Association (USGA; USGA Green Section Staff, 2007). Native soils high in silt and clay tend to have greater soil water contents and slower water infiltration rates compared to constructed sand root zones (Pitt et al., 2008). The decreased water infiltration rates of cohesive soils (i.e., non-sand soils) are potentially problematic when precipitation occurs prior to athletic events. It has been reported that cohesive soil athletic fields with high soil water content tend to lose green turfgrass cover faster than those with lower soil water content (Rogers, 1988; Carrow et al., 2001).
Constructed sand root zones are used on many U.S. collegiate and professional football fields. Sand root zones are preferred because of consistent air-filled porosity, rapid drainage, and compaction resistance, which help avoid rain delays or cancellations (Bingaman and Kohnke, 1970; Bigelow and Soldat, 2013; Brockhoff et al., 2010). While multiple types of constructed sand root zones exist, the USGA specification is the most common for high-end athletic fields because it provides acceptable stability and optimal drainage (Bigelow and Soldat, 2013). However, sand root zones may not be used on all athletic fields due to high construction costs (STMA, 2008).
The objective of this research was to determine the impact of soil water content on the performance of hybrid bermudagrass on cohesive soil (silt loam) and non-cohesive (USGA specification) root zone when subjected to traffic. Two field studies were conducted from 2014–2015 at the University of Tennessee Center for Athletic Field Safety (Knoxville, TN) to determine soil water content impact on compaction and loss of green turfgrass cover on ‘Tifway’ hybrid bermudagrass [Cynodon dactylon (L.) Pers. x C. transvaalensis, Burtt-Davy]. Study I was conducted using plots established on a Sequatchie silt loam soil (fine-loamy, siliceous, semiactive, thermic Humic Hapludult). This soil was selected due to its common use on high school athletic fields in Knoxville, TN. Study II used plots established on a sand meeting USGA specifications (0.7% very coarse, 14.3% coarse, 61.4% medium, 18.1% fine, 5.1% very fine, and 0.4% silt and clay by weight) mixed with 20% (volume) reed sedge peat moss (United States Golf Association, 2007).
Study I had four soil moisture ranges: low (6 – 13%), medium (14 – 21 %), medium-high (22 – 29%), and high (30 –37%). Study II soil moisture ranges were: low (5 – 11%), medium (12 – 19%), and high (20 – 27%) throughout the study for both years. Differences in the amount of ranges between root zones were due to plant available water of the soil texture. Water was applied to each experimental unit as needed based on the average of seven root zone moisture measurements (3 in depth) collected daily using a handheld time domain reflectometer (TDR) probe (FieldScout 300 Probe, Spectrum Technologies, Inc. Plainfield, IL). Traffic was applied to both studies using a self-propelled core aerifier similar to the Baldree Traffic Simulator (BTS) described by Kowalewski et al. (2013). Each plot received 50 traffic events each year.
Silt Loam Root Zone
This study’s findings indicate that increased soil water content on cohesive soils resulted in greater loss of green turfgrass cover when trafficked (Fig. 1). High soil water content ranges lost green turfgrass cover approximately four times faster than the low or medium soil water content and three times faster than medium-high soil water content treatments (Fig. 1). Surface hardness varied across traffic events due to soil water content (Fig. 2). These findings indicate surface hardness of a field can be manipulated by adjusting soil water content, suggesting that high soil moisture and soil compaction have significant impacts on surface hardness values. Cohesive soils, due to the higher quantities of silt and clay, are more responsive to increases in water content (Israelachvili and Adams, 1978; Schoen et al., 1987).
Regardless of soil water content, soil bulk density increased as traffic events increased. The increase in soil bulk density was due to reduction of the air-filled pore space of soil. Shear strength declined most rapidly at the high soil water content treatment (Fig. 3). The high soil water content had the greatest loss of green turfgrass cover, extremely low surface hardness values and unacceptable shear strength throughout a majority of this study. This study found plots maintained at 7 to 20% soil water content provided the optimal surface for athletic field performance for the silt loam athletic field.
USGA Sand Specification Root zone
Soil water content treatments had little impact on the non-cohesive root zone when trafficked. The high soil water content treatment resulted in less than ideal surface hardness values, but not unstable conditions (Fig. 2). Soil bulk density increased six percent after 50 traffic events, which was accompanied by a six percent decrease in air-filled porosity (data not shown). Results suggest that shear strength values were not affected by soil water content in the sand root zone, but by the loss of green turfgrass cover due to traffic (data not shown). No optimum soil water content range was identified of those tested in this study for the sand root zones.
In this study 50% was selected as the worst case for low input athletic fields (i.e., parks, recreation, etc). The authors are aware that higher green turfgrass cover levels could be the minimum acceptable limit for professional athletic fields. Also, the soil water content ranges determined as optimal are not for all root zones, these are only for the listed soils described above. Slight changes in the composition of sand, silt, and clay in addition to sand particle size could greatly change the optimum ranges for those soils.
Conclusion
Results from this research indicated that hybrid bermudagrass established on a silt loam soil performs best when soil water content ranges were in the low and medium range. These results of the optimal range for silt loam soils correspond to plant available water and potentially explain the superior results. The high soil water content treatment lost cover at a rate four times faster than the low and medium soil water content treatments. The high soil water content treatment decreased turfgrass stability and negatively impacted field performance because of the saturated soil conditions. Soil water content treatments minimal impact on hybrid bermudagrass traffic green turfgrass cover loss on sand root zones with few differences detected among field performance characteristics or soil physical properties. Our results indicate that low to medium soil water content provide optimum field performance for hybrid bermudagrass on silt loam root zones. While no optimum range was identified in sand root zones.
References
Bigelow, C. A., and D.J, Soldat. 2013. Turfgrass root zones: management, construction methods, amendment characterization, and use. J.C. Stier, B.P. Horgan, and S.A. Bonos (ed.) Turfgrass: Biology, Use, and Management, 383-423. Bingaman, D. E., and H. Kohnke. 1970. Evaluating sands for athletic turf. Agron. J. 62:464.
Brockhoff, S. R., N. E. Christians, R. H. Killorn, and D. D., Dedrick. 2010. Physical and mineral-nutrition properties of sand-based turfgrass root zones amended with biochar. Agron J. 102:1627-1631.
Carrow, R. N., Duncan, R. R., Worley, and J. E., Shearman, R. C. 2001. Turfgrass traffic (soil compaction plus wear) simulator: response of Paspalum vaginatum and Cynodon spp. Int. Turf. Soc.Res. J. 9:253-258.
Israelachvili, J.N. and G.E. Adams.1978. Measurement of forces between two mica surfaces in aqueous electrolyte solutions in the range 0–100 nm. J. Chem.Soc.74: 975-1001.
Pitt, R., S. Chen, S. Clark, J. Swenson, and C. Ong. 2008. Compaction’s impacts on urban storm-water infiltration. J. of Irrig. and Drainage Eng. 134:652-658.
Rogers, J.N. 1988. Impact absorption and traction characteristics of turf and soil surfaces. Ph.D. dissertation. Penn. State University. University Park, PA.
Schoen, M., D.J. Diestler, and J.H. Cushman. 1987. Fluids in micropores. I. Structure of a simple classical fluid in a silt-pre. J. Chem. Phys. 87:5464-5476.
STMA. 2008. A guide to synthetic and natural turfgrass for sports fields: Selection, construction and maintenance considerations. 2nd ed. Sports Managers Assoc., Lawrence, KS. http://kafmo.org/pdf/stma_synthetic turfguridhipg1.pdf . Accessed 10 July 2016.
United States Golf Association. 2007. United States Golf Association recommendations for a method of putting green construction. [Online] Available at: http://www.usga.org/turf/course_construction/green_articles/putting_green_guidelines.html.(Accessed 16 July 2016).
How Crumb Rubber Particle Size and Depth Impacts Traffic Tolerance of Hybrid Bermudagrass
By Kyley H. Dickson, Ph.D. and John C. Sorochan, Ph.D.
Athletic fields can develop worn areas due to traffic. Finding methods to alleviate traffic is important to improve traffic tolerance of an athletic field. Topdressing is one method that field managers use to mitigate some of the negative impacts of traffic. Topdressing has been identified as a way to reduce undulation, increase water infiltration, aid in thatch decomposition, modify topsoil, and improve surface firmness (Goss, 1977). Crumb rubber generated from recycled automotive tires can be used as a topdressing medium on athletic fields (Rogers et al., 1998). When subjected to traffic, Kowaleski et al. (2011) reported that topdressing with crumb rubber was more effective in increasing Kentucky bluegrass cover and shear strength than topdressing with sand. Additionally, Kentucky bluegrass cover increased with crumb rubber topdressing rate (Rogers et al., 1998).
Increased wear tolerance and decreased surface hardness and soil bulk density were observed in ‘Tifway’ hybrid bermudagrass as well as ‘Riviera’ and ‘Quickstand’ common bermudagrass when topdressed with one inch (0.04 – 0.09 in particle size range) of crumb rubber (Goddard et al., 2008). Similar results might be achieved using less crumb rubber of a smaller particle size, as they more fully envelop stoloniferous meristems of bermudagrass compared to larger particles. The goal of this study was to determine optimal crumb rubber particle size and topdressing depth combinations for use on hybrid bermudagrass athletic fields.
‘Tifway’ hybrid bermudagrass plots were established at the University of Tennessee Center for Athletic Field Safety (Knoxville, TN) on a leveled Sequatchie silt loam soil. Five crumb rubber topdressing materials were evaluated in this study: Coarse, Medium Coarse, Medium, Fine, and Very Fine. These crumb rubber materials varied in both particle size and uniformity (Table 1). Crumb rubber topdressing was applied in 0.25 in increments seven days apart until desired depths of 0.25 in, 0.50 in and 0.75 in were achieved. A non-topdressed control (0 in) was included for comparison.
Plots were subjected to traffic using a Cady Traffic Simulator. The Cady Traffic Simulator used was a modified core aerifier (Jacobsen VA-24; Jacobsen, Charlotte, NC) that imparted impact forces equivalent to those generated by American football players (Henderson et al., 2005). Traffic dates coincided with the high school football season in Knoxville, TN. Traffic was applied until all plots received 25 traffic events each year. Hybrid bermudagrass percent green cover was quantified immediately after each traffic. Surface hardness was measured on all plots immediately following traffic using a Clegg Impact Soil Tester. Soil water content (%) data were collected on each date surface hardness was assessed using a time domain reflectometry probe equipped with three-inch tines (FieldScout 300 Probe. Spectrum Technologies, Inc. Plainfield, IL).
Green Cover
All depths of crumb rubber topdressing maintained green cover longer than non-topdressed control plots (Figure 1). Only 12 traffic events reduced green cover below 50% on non-topdressed control plots compared to 20 traffic events for those receiving crumb rubber at 0.5 or 0.75 in. Applying 0.25 in of crumb rubber topdressing improved 50% green cover values compared to non-topdressed control plots but less so than applications at 0.5 or 0.75 in. On Kentucky bluegrass, Rogers et al. (1998) also reported that topdressing crumb rubber to a minimum depth of 0.25 in increased turfgrass cover in response to traffic events and suggested that this response may be a result of crumb rubber particles protecting plant crowns during traffic application (Rogers et al., 1998). The improved traffic tolerance observed herein could be due to crumb rubber protecting hybrid bermudagrass crowns by attenuating impact forces exerted during foot strike with the turf canopy. Regardless of particle size, all plots receiving crumb rubber maintained green cover longer than non-topdressed control plots (Figure 2). Non-topdressed control plots were reduced to 50% green cover after 12 traffic events while those receiving crumb rubber topdressing required 19 to 21 traffic events to be reduced to 50% green cover. However, few differences due to crumb rubber particle size were observed in our study.
Surface Hardness
Crumb rubber topdressing depth impacted surface hardness after application of 25 traffic events (Figure 3). Surface hardness on non-topdressed control plots measured 73 Gmax compared to 52-57 Gmax for plots topdressed to a 0.5 or 0.75 in depth. A similar response was observed in our green cover data with the 0.25 in topdressing depth having a less pronounced effect on hybrid bermudagrass athletic field turf than 0.5 or 0.75 in. Regardless of crumb rubber particle size, every increase in topdressing depth resulted in a significant reduction in surface hardness, similar to responses reported by Rogers et al. (1998) on Kentucky bluegrass. Future studies are warranted to determine optimal crumb rubber topdressing depth to reduce soil bulk density on Tifway hybrid bermudagrass subjected to traffic.
Conclusions
All crumb rubber treatments in this study increased traffic tolerance compared to plots not receiving crumb rubber topdressing. All crumb rubber topdressing depths increased number of traffic events to 50% green cover values more than 50% compared to non-topdressed control plots and reduced surface hardness. Crumb rubber particle size did not have any practically important differences on green cover or surface hardness. Given the responses observed in the current study, depth is a more important factor in selecting crumb rubber topdressing for hybrid bermudagrass athletic fields than particle size.
References
Goddard, M. J.R., J.C. Sorochan, J.S. McElroy, D.E. Karcher and J.W. Landreth. 2008. The effects of crumb rubber topdressing on hybrid Kentucky bluegrass and bermudagrass athletic fields in the transition zone. Crop Sci. 48:2003-2009.
Goss, R.L. 1977. Topdressing your way to better greens. Proc. IL. Turf. Conf. 18:33-37. Henderson, J.J., J.R. Crum, T.F. Wolff, and J.N. Rogers. 2005. Effects of particle size distribution and water content at compaction on saturated hydraulic conductivity and strength of high sand content root zone materials. Soil Sci. 170:315-324.
Kowalewski, A.R., J.C. Dunne, J.N, Rogers, and J.R. Crum. 2011. Heavy sand and crumb rubber topdressing improves Kentucky bluegrass wear tolerance. App. Turf. Sci. 100:60.
Rogers, J.N., J.T. Vanini, and J.R. Crum. 1998. Simulated traffic on turfgrass topdressed with crumb rubber. Agron. J. 90:215-221.
READ THE ISSUE